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Abstract

The resonant beam technique is a simple and effective method to measure the elastic moduli of
rectangular or cylindrical isotropic beams. This paper proposes an extension of this method to highly
anisotropic materials with orthotropic or higher symmetry via measurement of one or more samples, which
are cut out of the material in different directions. The method is validated with computer simulated samples
and measured unidirectionally carbon fibre reinforced carbon samples.
© 2004 Elsevier Ltd. All rights reserved.

1. Introduction

The resonant beam technique (RBT) is widely used to determine simultaneously both Young’s
modulus and the shear modulus of isotropic materials from the resonance frequencies of flexural
vibrations [1-3]. Timoshenko [4,5] established the basic differential equation of the theory. The
solutions of this equation for different end configurations (i.e., supported, clamped or free at the
respective end) can be found in a work by Huang [6].

The measurement and evaluation of the elastic moduli of anisotropic materials with the
resonant beam technique is possible, but is subject to the following drawbacks. The evaluation
procedure, which fits the calculated eigenfrequencies of a beam to the measured eigenfrequencies
via Young’s modulus E and the parameter E/kG, gives accurate results for Young’s modulus, but
more or less diverging or even wrong results for the shear modulus. The reason for this behaviour
is that the shear correction factor k for isotropic materials is not applicable to anisotropic
samples. The difference between the experimentally measured and the real value is insignificant if
the shear modulus is small compared to Young’s modulus, but can be arbitrarily large if the shear
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modulus is of the same order as Young’s modulus. The second drawback is that not all elastic
moduli can be calculated with this simple method, even if several sample beams, oriented along
different directions in space, are measured.

This paper presents an extension of the RBT to the measurement of the elastic moduli of
anisotropic materials. This extension is based on the recently derived anisotropic shear correction
factor [7], which in turn is based on the work of Hutchinson [8] for isotropic beams. The paper will
focus on the sample requisites, evaluation problems and possible approaches to solve these
problems. The new method is tested experimentally with a simulated mono-crystalline copper like
material and a unidirectional carbon fibre reinforced carbon material, which has been
manufactured by Schunk Kohlenstofftechnik.

2. The transverse eigenfrequencies of an anisotropic rectangular beam

The basis for the RBT is the frequency equation (1) [6], which is the solution of the fourth order
differential equation of the Timoshenko beam theory with the correct boundary conditions (i.e.,
in this case the free—free solution). The roots of the frequency equation are the resonant
frequencies of the flexural vibrations, which can be determined numerically via a suitable method
like bracketing. Since the derivation of the differential equation of the Timoshenko beam theory
given in Ref. [9] does not depend on any specific symmetry of elasticity, it does hold true for
anisotropic materials if the following conditions are met: (The references to equations in this
paragraph refer to Cowper’s publication [9]. The co-ordinate system is the same as in Fig. 1.) the
nature of the elastic symmetry must be so, that it can be described with elastic moduli (isotropic,
cubic, hexagonal, etc. but not trigonal, triclinic, etc.). Then the stress—strain relation ¢, = o./G
given in Eq. (17) holds true with G = G,, and the isotropic Hooke’s law in Eq. (20) can be
replaced with its anisotropic counterpart. It must still be assumed, that the transverse stresses o,
and o, are small in comparison with ay,, so that the integral in Eq. (22¢) can be neglected. The

Fig. 1. The experimental set-up and the definition of the co-ordinate system. The network analyser stimulates the
sample, which is suspended in two carbon fibre loops, via a piezo electric transducer in a given frequency range and
records the answer signal via a piezo electric receiver.



S. Puchegger et al. | Journal of Sound and Vibration 279 (2005) 1121-1129 1123

shear stresses, the displacement and the harmonic function in the second assumption (Eq. (24))
must be replaced with their anisotropic counterparts (see Ref. [7] for a similar procedure).

The frequency equation f(w) for an anisotropic beam with free—free boundary conditions can, if
all these conditions hold true, be written as

f(®) =2 — 2 cosh(ba) cos(bp) + \/ﬁ
x (" — §*)* + (3r* — s%)) sinh(bo) sin(bp) M

with

\/—(r2 +2) 407 - 2+ 4/
o= 7 ,

\/(rZ +52) + \/(r2 — %) + 4/
b= NG :

_ ,OAI4602 ) Iz 2 Exlz

b - —
EL | A2 T T kAGL
wh’ hw?
A—M/h, IZ—H, Iy_?

and /, w, h being the length, the width and the height of the specimen, 7, and I. the second moment
of area with respect to the y- and z-axis, p the density, k the shear correction factor [10] (see
Appendix A) and A the cross-sectional area. E and G,, are Young’s modulus in the direction of
the beam and the shear modulus in the plane of vibration. The compliance matrix has to be
rotated in such a way, that the co-ordinate system of a sample coincides with the co-ordinate
system of the moduli used in Eq. (1). Please consult Ref. [11] for further information on this topic.

3. The samples and the experimental set-up
3.1. The samples

If the sample material has a high elastic symmetry, then it is advantageous to produce samples
with a non-square cross-section, since that will separate the eigenfrequencies of the transverse
vibrations in the xy and in the xz plane. This maximizes the number of measured eigenfrequencies
which are available for the fitting procedure. A lower elastic symmetry (e.g., orthotropic) can
separate the eigenfrequencies even in the case of a square cross-section.

Due to the large sample size it is of utmost importance, that the sample material is
homogeneous.

The first sample type is a simulated cubic crystal with a shear modulus, that is of the same order
as Young’s modulus of the material. The second sample type is a unidirectional carbon-fibre
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reinforced carbon, which features a very large Young’s modulus in the direction of the
reinforcement, a very low Young’s modulus perpendicular to the direction of reinforcement and
low shear moduli.

Cubic crystal: The first sample is a cubic crystal, whose eigenfrequencies are simulated via
calculations based on resonant ultrasound spectroscopy (RUS) [12]. The crystal is similar to a
cubic copper single crystal, but has a lower shear modulus. The elastic properties of the crystal are
the following: a Young’s modulus of 66.6 GPa, a shear modulus of 55 GPa and a Poisson ratio of
0.41. The sample has a length of 50 mm, a width of 7 mm, a height of 6 mm and a density of
8920 kg/m?. The simulated specimen is oriented along the [1 0 0] direction.

Unidirectional carbon—carbon (CIC) composite: The second sample type are plates of
unidirectional carbon-fibre reinforced carbon produced by Schunk Kohlenstofftechnik. The
plates are approximately 300 mm long, 100 mm wide and 5 mm high. The direction of
reinforcement is along the longest axis of the sample plate. The sample bars have been cut parallel
and perpendicular to the direction of reinforcement and are approximately 100 mm long, 8 mm
wide, 5 mm high and have a density of 1600 kg/m>. The samples cut perpendicular to the
reinforcement direction often contain cracks, since the material is very brittle. The samples chosen
for the measurement are those with a minimum number of visible cracks.

3.2. The experimental set-up

Only a short summary of the equipment and experimental set-up will be given here, because it
has been described in more detail in a previous publication [3]. The specimen is suspended on two
carbon fibre loops, which are attached to two piezoelectric transducers, and excited to flexural
vibrations via the loops (see Fig. 1). The resonant frequencies are identified by sweeping the
frequency range with a network analyser. Even very weak resonances can be detected, since the
noise level is at about —140 dBm'.

4. The evaluation

The evaluation procedure is very similar to the evaluation procedures of the Resonant Beam
Technique, Resonant Ultrasound Spectroscopy or the Electro magnetic Acoustic Resonance
(EMAR) [13]. It is an inverse process that tries to acquire the elastic constants by fitting a set of
calculated eigenfrequencies to the measured eigenfrequencies. The calculated eigenfrequencies of a
sample are given by the roots of Eq. (1). The two problems with this process are that not all
eigenfrequencies might be present in the measured spectrum or that surplus eigenfrequencies (e.g.,
from the transducers) could appear and that good starting values are required for the fitting
procedure.

The problem of the surplus eigenfrequencies can be tackled by choosing different or specifically
constructed transducers but the problem of missing eigenfrequencies, which have not been excited,
is present in all three measurement procedures. This can make it harder to assign the calculated
eigenfrequencies to their corresponding measured counterparts, if no previous knowledge about

'dBm: The symbol is an abbreviation for ‘decibels relative to one milliwatt’.
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the elastic constants is present. This method tries to simplify this problem via a two stage
evaluation, but cannot solve it altogether.

4.1. The isotropic evaluation

The evaluation of the samples is a two stage process. The first stage is the evaluation of the
anisotropic samples under the assumption, that the elastic symmetry is isotropic. This will give a
shear modulus which is slightly too small if the shear modulus of the material is low and far too
high a result if the modulus is of the same order or higher than the Young’s modulus. The result is
thus possibly but not necessarily a practical starting value for the second evaluation stage. An
example of a material with a low shear modulus and high Young’s modulus is carbon-fibre
reinforced carbon.

Using the isotropic evaluation as a first stage has two advantages:

(1) Young’s moduli calculated in the isotropic evaluation are close to the real value. This offers
two possibilities for the second evaluation stage. The first is to keep Young’s moduli constant
to simplify the fitting procedure. The alternative is to use them as good starting values if
Young’s moduli are included in the fit.

Care should therefore be taken, that the main sample axes are aligned with the directions of
elastic symmetry. Examples are [100] for a cubic system, [100] and [00 1] for a transversely
isotropic system oriented along the z-axis and [100], [010] and [00 1] for an orthotropic
system. It is not always possible to produce beams oriented along all of the main symmetry
directions of the sample material due to limitations of its size and shape.

(2) This isotropic two parameter fitting makes it far easier to identify the eigenfrequencies of the
transverse vibrations. The mapping from the calculated to the measured eigenfrequencies
gained in this first evaluation stage is used in the second evaluation stage, which in turn can
concentrate on the multi-parameter fitting to the anisotropic model.

4.2. The anisotropic evaluation

The second stage of the evaluation is to fit the calculated eigenfrequencies to the measured
eigenfrequencies for all samples simultaneously via the anisotropic elastic moduli. It is of crucial
importance at this point of the evaluation that the sample is homogeneous, since the algorithm is
based on the assumption that all the samples originate from the same homogeneous material and
are likely to produce meaningless elastic moduli if this is not the case.

If Young’s moduli in the directions of elastic symmetry have been measured and evaluated in
the first stage, it is reasonable to keep them fixed in the second stage of the evaluation, since the
higher-dimensional the parameter space is, the more problematic the fitting procedure becomes. A
second fitting run can be done with no fixed parameters after approximate values for the not so
well known constants have been found in a first anisotropic fitting run.

The condition that the compliance matrix must always be positive definite bounds the region of
the valid set of elastic constants. The fitting algorithm must not be allowed to leave this region or
one has to make certain that the final point of the procedure is within the allowed region.
Depending on the fitting algorithm used, either the penalty function method or the projection
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method is more suitable [14]. The penalty function method is simpler to implement, but a penalty
function suitable for one task is very likely not suitable for a different task.

5. Results and discussion

Cubic crystal: Fig. 2 shows the simulation and evaluation procedure of the cubic crystal. The
results from the isotropic evaluation show clearly that Young’s modulus is reproduced very
accurately and that the shear modulus is too large. The shear modulus is nevertheless successfully
used as a starting value for the second part of the fitting procedure. The results (£ = 66.6 GPa,
G = 55.1 GPa and v = 0.38) of the anisotropic fit reproduce the initial moduli (£ = 66.6 GPa,
G = 55 GPa and v = 0.41), that were used to calculate the eigenfrequency—spectrum via RUS,
closely.

Unidirectional carbon—carbon composite: The measurement and evaluation procedure of the two
transversely isotropic unidirectional carbon—carbon composite samples is shown in Fig. 3.

The isotropic evaluation of the two samples, which are oriented perpendicular to each
other, gives Young’s moduli that are very close to the final value. The beam perpendicular
to the reinforcement has two different shear moduli. The shear modulus in the plane parallel
to the reinforcement should be the same as the two shear moduli given by the beam parallel to the
reinforcement, but has a larger numerical value (~12.4 GPa versus ~7.5 GPa). The lower of the
two values has been used in the second evaluation stage, since it is closer to the final value, which
is due to the higher Young’s modulus in the direction of the corresponding beam.

The starting value for v, for the second part of the evaluation, is based on the fact, that a larger
vy. would produce a compliance matrix that is not positive definite. The results of the second
evaluation stage are thus E, = 5.2 GPa, E. =210 GPa, G,, = 1.87 GPa, G,. = 8.9 GPa and

initial moduli E = 66.6 [GPa] G = 55.0[GPa], » = 0.41

simulation RUS
evaluation
eigenfrequencies
isotropic RBT assumption
E = 66.6 [GPa]
y [ ] v =025
G ~ 80 [GPa]

anisotropic RBT

final moduli E = 66.6 [GPa], G = 55.1[GPa], v = (.38

Fig. 2. The simulation and evaluation procedure of the cubic crystal.
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sample material

Y =

e 4
(I measurement
("V‘rllll'{l[i(]ll
eigenfrequencies eigenfrequencies
isotropic RBT isotropic RBT assumption
E, = 5[GPa) E. = 212[GPa)
i R, vy, = 0.01
Ggy ~ 1.7[GPa] G,. ~ 7.5[GPa)

anisotropic RBT

final moduli
E. =5.2[GPa), E. = 210[GPa], G,, = 1.87[GPa], G,. = 8.9[GPa), v,. = 0.0012

Fig. 3. The measurement and evaluation procedure of the transversly isotropic sample material.

vy> = 0.0012 for this material. Young’s modulus in the direction of the reinforcement is dominated
by Young’s modulus of the carbon fibres of around 300 GPa, which is due to the production
process of the composite at about 2100°C. The measured Young’s modulus follows from this
value, since the volume fraction of the reinforcement is usually 60-70% and Young’s modulus of
the matrix material (~E,) can be neglected. The shear modulus in a plane parallel to the
reinforcement (G.,.) is expectedly larger than in a plane normal to the reinforcement (G,,).

6. Final remarks

It can thus be concluded, that the method is theoretically and experimentally feasible, but very
much depends on the material being homogeneous, because the samples need to be long beams.
The evaluations of both the cubic sample simulated with RUS and the measured transversely
isotropic samples reproduce the initial moduli respectively give meaningful and consistent moduli
for the sample material.

Another possible application of the results of the isotropic evaluation is as starting values for
the fitting procedure of a RUS sample. RUS is based on the stiffness matrix and not the
compliance matrix, but it is possible to separate the fitting and the calculation part of RUS, so
that the fitting is based on elastic moduli or the compliance matrix and the calculation of the
eigenfrequencies is based on the corresponding stiffness matrix. This would again result in a
reduction of the number of unknown values in the fitting procedure.
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Appendix A. The shear correction factor
The shear correction factor k for an orthotropic rectangular beam [7] is

E
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E., Gy, Gy, vyy and v are Young’s modulus, the shear moduli and the Poisson ratios of the
beam used in the theory. w and /4 are the width and the height of the sample. The co-ordinate
system is defined in Fig. 1.
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